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Many growing networks possess accelerating statistics where the number of links added with each new node
is an increasing function of network size so the total number of links increases faster than linearly with network
size. In particular, biological networks can display a quadratic growth in regulator number with genome size
even while remaining sparsely connected. These features are mutually incompatible in standard treatments of
network theory which typically require that every new network node possesses at least one connection. To
model sparsely connected networks, we generalize existing approaches and add each new node with a proba-
bilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statis-
tics in different regimes. Under preferential attachment for example, slowly accelerating networks display
stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks
display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for
instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.
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I. INTRODUCTION

The rapidly expanding field of network analysis, reviewed
in [1-3], has provided examples of networks exhibiting “ac-
celerating” network growth, where total link number grows
faster than linearly with network size [4]. For instance, the
internet and worldwide web appear to grow by adding links
more quickly than sites [5,6] though the relative change over
time is small [7]. Similarly, both the number of links per
substrate in the metabolic networks of organisms [8] and the
average number of links per scientist in collaboration net-
works increase linearly over time [9-13], while also lan-
guages appear to evolve via accelerated growth [14]. These
studies have motivated general examinations of accelerating
networks [15], including accelerating citation networks [16],
duplication models exhibiting linear and superlinear growth
in link number with network size [17-19], and stochastic
accelerating networks where the number of new links added
is probabilistic (though integral and greater than 1) causing
network transitions from scale-free to exponential statistics
[13,15,20-23].

These previous studies of deterministic or stochastic net-
works have typically considered networks where every node
has at least one connection, which constrains the rate of ac-
celeration that can be considered. In particular, if each new
node added to a network of N nodes is accompanied by N
=1 new links with acceleration parameter ae=0, then ensur-
ing that the network is less than fully connected constrains
acceleration parameters to the range 0<a<1 [6]. Equiva-
lent limits were considered in Refs. [15,17-19]. However,
real networks can contain a majority of nodes that are en-
tirely unconnected—many computers are unconnected or
only intermittently connected to the internet and many
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people are unconnected nodes in social or sexual contact
networks. Modeling networks where a substantial proportion
of the nodes are unconnected requires a probabilistic ap-
proach in which the number of links added with each new
node scales as pN“® for some probability parameter 0<p
=< 1. The introduction of a probabilistic envelope lifts con-
straints on the acceleration parameter allowing networks dis-
playing deceleration <0, no acceleration =0, accelera-
tion 0<a<1, and hyperacceleration =1 (while, as we
will show, imposing additional constraints on the ability of
the network to grow).

Hyperaccelerating probabilistic networks with p<<1 and
a=1 are not merely of theoretical interest, and appear for
instance in prokaryote gene regulatory networks where many
gene nodes are unregulated and merely constitutively or sto-
chastically expressed [24-26]. Prokaryote gene regulatory
networks are sparsely connected (p<<1) and display hyper-
acceleration =1 as established by independent comparative
genomics analyses [27-31]. This is likely due to their reli-
ance on sequence homology interactions between protein
transcription factors and specific promoter binding sequence
sites [31]. In these regulatory networks, outbound regulatory
links are preferentially attached to existing regulator nodes
as gene duplication events contribute to up to 75% of each
new gene [32-38] and regulatory transcription factor [39,40].
In contrast, inbound links to regulated nodes are randomly
formed due to the random drift of gene promotor sequences,
although their subsequent fixation is determined by selection.
The high acceleration parameter a=1 ensures that these
prokaryote gene regulatory mechanisms are size and com-
plexity constrained at predicted limits which closely match
genomic size limits observed in the evolutionary record
[24-26,31]. Accelerating networks are more prevalent and
important in society and in biology than is commonly real-
ized. In fact, any network in which the dynamical state of
any node depends on the immediately preceding state of
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(ideally) every other node is accelerating and will perhaps
display either structural transitions from randomly con-
nected, to scale-free statistics, to densely connected, and per-
haps finally to fully connected statistics, or explicit size and
complexity constraints [41].

This paper generalizes previous analyses to consider
probabilistic accelerating networks in decelerating regimes
with @<<0, accelerating regimes with 0<a <1, and hyper-
accelerating regimes where a=1. We will show that hyper-
accelerating networks under preferential attachment of new
connections to existing nodes can display transitions in their
degree distribution statistics (measuring the connectivity, i.e.,
the number of connections at each node) from scale-free to
exponential statistics dependent on the acceleration param-
eter «, the probability parameter p, and the network size N.
These transitions occur at the point where the accelerating
growth in connection number can no longer be sustained,
introducing exponential cutoffs in the node degree distribu-
tions. These cutoffs can be generated by different mecha-
nisms and appear in growing networks subject to strong ag-
ing effects [42], in finite-sized networks [43], with the
discarding of nodes [44], and in information filtered net-
works [45,46].

Throughout, the degree of node n; under the continuum
approximation is k;; at network size j. In existing treatments,
the k;; degree distribution suffices as every node has at least
one connection. In contrast, we here consider sparsely con-
nected networks where many nodes are initially uncon-
nected, and it is sometimes necessary to consider the average
degree distribution of only connected nodes, denoted
k.(j,N). The node degree distribution k;;, as usual, allows
calculating the link distribution P(k,N) specifying the prob-
ability that a node has degree k in a network of size N.
However, for rapidly accelerating networks, it is possible
that all nodes have fractional degree less than unity,
P(k,N)<1, which of course is unobservable as nodes must
have an integer number of connections. This requires the
specific calculation of a discrete degree distribution P, speci-
fying the probability that a network node has integer connec-
tivity k given the continuous degree distribution P(k,N).

To complete our examination of network transitions in
accelerating, hyperaccelerating, and decelerating probabilis-
tic networks, we first define our growing network models
using undirected links in Sec. II. This definition allows an
immediate rough quantification of the probability of an ac-
celerating network forming a single giant connected compo-
nent or undergoing a transition to a fully connected regime
with network growth. In Sec. III we examine probabilistic
networks growing through the preferential attachment of new
links to existing connected network nodes, while in Sec. IV
we examine growing probabilistic networks featuring the
random attachment of new links to all existing nodes.

II. PROBABILISTIC ACCELERATING NETWORKS

In this section, we introduce notation describing our
growing networks allowing the location of growth transi-
tions. We consider networks growing through the sequential
addition of numbered nodes n; for 1 <i=< N where at network
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size j, node n; (1<i<j) has k; undirected links. The addi-
tion of node n; and its k;; links will increase the probable
number of links attached to existing nodes n; for 1 <i<(j
—1) so k;;=k;. We assume new links are added only with
each arriving node (so no new links are added between es-
tablished nodes), and that the average number of new links
attached to node n; on its entry to the network is a function of

network size,

ki[=pia, (1)

where the probability constant p satisfies 0<p =< 1. This av-
erage is then a decreasing function of network size for
a <0, constant for =0, and an increasing function of net-
work size for & >0. The total expected number of links L in
a probabilistic network of large size N is then

N N
L=Epi“zf pi®di
1

S YL P S
l+a 1+«
~{plhN, a=-1, (2)
N1+a
Py =P s,
kl+cv 1+a

Consequently, the expected number of connections is C
=2L, and the average degree of each node is (k)=C/N. In
later numerical simulations, we compare the statistics of net-
works of different sizes, which is possible provided they pos-
sess the same average degree at some maximum simulated
network size, denoted N.. We achieve this for accelerating
networks with =0 by choosing different probability pa-
rameters p for each different sized network according to

_ (I+ a3<k>~ 3)
2N,
This allows us to later consider different networks with iden-
tical average degree (k)=0.4, where networks have maxi-
mum simulated size of either N,=1000 nodes connected by
L=200 links with p=0.2(1+a)1073%, or N,=10000 nodes
connected by L=2000 links with p=0.2(1+a)107*%,
Because link formation is probabilistic, we must specify a
probability distribution for the formation of links with each
node added. The total number of links attached to node n; on
entry to the network, denoted j say, ranges between 0 and i,
so 0=j=i with average pi®. As each link either forms or
does not form, we model the link formation process using a
binomial distribution. For the binomial distribution, the av-
erage k;=pi“ equates to the product of the maximum number
of links i and the link formation probability. Conversely, the
size-dependent link formation probability at network size i
equates to k;/i=pi®"'. Consequently, the probability distri-
bution that node n; forms exactly j links on entry to the
network is
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P(.i) = ()(pl“")’[l pi 1. (4)

That is, when a=0 the latest node n; can potentially form
links with every one of the i existing nodes (counting itself)
with a network-size-dependent probability p/i to give an av-
erage number of new links of p connections with each new
node. When a=1, the latest node n; can potentially form
links with every other node with constant probability p to
give an average number of new links of pi with each new
node, and so on. The connection probability is constrained to
be less than unity, pi®'<1, or equivalently, the average
number of links added to node n; is required to be less than
i, pi*<i. For constant p, hyperaccelerating networks with
a>1 will eventually violate these constraints with network
growth which effectively imposes size and structural con-
straints on these networks.

There are two types of network degree transitions which
have been of interest in the literature. The first occurs when
a growing network changes from sparse to dense connectiv-
ity as this change necessarily implies that the final degree
statistics will become exponential in nature. In fact, any net-
work of N nodes must be fully connected if it has N?/2
undirected links assuming that no nodes are connected by
more than one link. In this case, the degree distributions are
S-function distributed, and are thus in the exponential class
of distributions. That is, while a sparsely connected network
can possess either scale-free or exponential statistics, a
densely connected network must exhibit exponential statis-
tics (as multiple connections are not allowed between any
two given nodes). This transition occurs for undirected links
when approximately L>N?/2. The second transition of in-
terest occurs when the connected nodes coalesce to form a
single giant island of interconnected nodes. To borrow results
from random graph theory [47] (which have been roughly
validated for accelerating biological networks [24-26]), the
giant island is expected to form when approximately
L>N/2. We now investigate the dependence of these tran-
sitions on the acceleration parameter «.

It is evident that decelerating networks with a<<0 are
very sparsely connected so neither of the dense connectivity
or giant island transitions will occur. Hereinafter, we only
consider accelerating networks with a=0. For such net-
works, the dense connectivity and giant island transitions
will occur, respectively, at the points

N? L l+a N
L>—=N"1>—=-"F5
2 2p <k
N l+a N
L>—=N*> =—. (5)
2 2p (k)

This establishes that, for instance, nonaccelerating networks
with a=0 can never undergo a transition to a densely con-
nected regime for any choice of the probability parameter p
for large network sizes N, though these networks can form
giant islands with network growth as long as p>1/2. This
inability to become densely connected remains for all accel-
erating regimes «<<1, but dense connectivity can emerge in
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the hyperacceleration regime. At this point with a=1, grow-
ing networks can undergo a transition to the densely con-
nected regime when the probability parameter is large,

p=1. For yet higher acceleration rates a>1, all growing

networks undergo a transition to the dense connectivity re-
gime and display single giant islands, and these transitions
occur at network sizes determined by the probability param-
eter p.

In the following sections, we determine the degree statis-
tics for accelerating and hyperaccelerating networks under
both preferential and random attachment of new links to es-
tablished nodes.

III. PREFERENTIALLY ATTACHED
ACCELERATING NETWORKS

We now turn to consider accelerating and hyperaccelerat-
ing networks (a=0) where new links are principally prefer-
entially attached to existing connected nodes. The final gen-
erated link distribution will depend on the balance of
different countervailing trends, namely, the respective
weights given to preferential versus random attachment, and
the magnitude of the acceleration parameter which influences
both the rate at which links are attached to newer nodes and
the rate at which older nodes accumulate links. We now ex-
amine these trends in detail.

We now calculate the degree distribution under preferen-
tial attachment. On entry into the network, node n; estab-
lishes an average of k;=pi® links with existing nodes n;
e{n,,...,n;}. We suppose that these links either are prefer-
entially attached to node n; with probability proportional to
n;’s current degree kj;, or are randomly attached to n; with
probability proportional to B3, a random connection param-
eter. Using the continuous approximation [4,48,49], the rate
of growth in link number for node n; is

ok kji _ (k;; + ,8)

. f(kw

Here, the rate of growth in the node degree kj; is determined
by the number of new links added with node n; (i.e., k)
which can be either preferentially attached to the existing
nodes n; with probability proportional to that node current
degree (1 e., k;;), or randomly attached if 8> 0 allowing even
initially unconnected nodes to establish connections. (The
case B=0 ensures that a node that receives zero links on
entry to the network remains unconnected for all time.)

The denominator of Eq. (6) is a probability weighting to
ensure normalization and is roughly equal to the total num-
ber of connections (C) for all nodes at network size i. Fol-
lowing [1], we can evaluate the denominator using the iden-

tity
a (" ok
_.f kjidjzf —Ldj + ky;, (7)
diJy o Oi

which can be evaluated using Eq. (6) to give

(6)
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ifk dj=2k (8)
Ji 0 Ji ] = i

Noting k;= pi®, this can be integrated to determine the de-
nominator of Eq. (6) to be

2p
a+1

fl (kji + B)dj = i+ Bi. )
0

The first term on the right-hand side is the total number of
connections at network size i and is in agreement with Eq.
(2). Substituting this relation back into Eq. (6) gives

ok pi®(ki+ B)
g [2pl(a+ 1)i%+ B]

(10)

The degree statistics can readily be obtained by integrating
Eq. (10) with the initial conditions k;;~ p;j“ at time j to ob-
tain

( N \P/Cr+B)
(p+ﬂ) 7 _ﬁ’ a:O,
2]7 (a+1)2a
ij:< o+ lNa+B
(pj*+P) 2 -B, a>0.
o
L a+ 1] A

(11)

Differentiation of these curves with respect to network size N
satisfies Eq. (6), while integrating these link numbers over all
mode numbers j (numerically for a>0) gives the required
total number of links as in Eq. (2). Further, differentiating the
linkage distribution k;y with respect to the age index j estab-
lishes that average node degree is monotonically decreasing
with increasing node age j for 0<a <1, flat for a=1, and
monotonically increasing for a> 1. In other words, irrespec-
tive of the choice of the B parameter, slowly accelerating
networks with 0=<a <1 have the majority of their connec-
tions in the oldest portions of their networks, while hyperac-
celerating networks with &> 1 place the majority of the con-
nections in the youngest portions of their networks. The
transition point occurs at a=1 when links are uniformly dis-
tributed over the network irrespective of node age.

The further analysis of this age-dependent degree distri-
bution is heavily dependent on the setting of the random
choice parameter (. Self-evidently, setting 8 small ensures
that preferential attachment processes dominate while the
choice of large 8 ensures that random attachment dominates.
Appendix A uses a Taylor series expansion to demonstrate
that preferential attachment dominates hyperaccelerating net-
works only when B is so small as to be essentially zero, and
hereinafter, we analyze preferential attachment using the set-
ting 5=0.

We are now in a position to simulate growing networks
under pure preferential attachment with no random contribu-
tion 8=0. For convenience, we note that the choice 8=0 sets
the degree versus age distribution to be
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FIG. 1. Snapshots of the nonstationary statistics of preferentially
attached growing networks all possessing an average number of
links per node (k)=0.4 when at network size N=1000. (a) The
average degree distribution k;y as a function of node age j for
various values of the acceleration parameter «. The degree distri-
bution is monotonically decreasing for 0 < o<1, flat for a=1, and
monotonically increasing for @>1. (b) Example simulated net-
works for various acceleration parameters a with nodes listed se-
quentially left to right from n; to ny with the degree of each node
indicated by vertical lines. The horizontal dashed line indicates an
average degree of 2.

kiszN(a+l)/2j(a_l)/2, (12)

for arbitrary a. The choice a=0 duplicates existing results
found for growing networks which add a constant number of
links with each new node subject to preferential attachment
[2], while additionally, choosing p=1 duplicates the deter-
ministic results of Ref. [15] in the regimes 0 < a <1 consid-
ered in that paper. This purely preferentially attached distri-
bution is shown in Fig. 1 along with example simulation runs
at different acceleration parameters «. (The floating free end
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of the first link to the first connected node is randomly at-
tached to any of the existing nodes as they all possess zero
links reducing preferential attachment to random attach-
ment.) Part (a) of this figure shows the average degree k;y of
node n; which is monotonically decreasing with respect to
node age for 0=<a <1 and monotonically increasing when
a>1. These different trends depend on whether the accumu-
lative effects of preferential attachment outweighs the accel-
erating number of added links or not. The setting a=1 en-
sures the average number of links per node is independent of
node number as preferential attachment exactly cancels the
bias in initial link number towards later nodes. Part (b) of
this figure shows the actual degree of node n; (rather than the
average degree) in example simulated networks, making it
evident that actual node degree is generally a monotonically
decreasing function of node age. Why this is so is discussed
later.

Observed statistics normally lack age or node number in-
formation, and we now follow standard practice in calculat-
ing the age-independent degree distribution. The k;y distri-
bution contains information about both node degree and
node age and so approximates network statistics (simulated
or observed) when all of this information is available. How-
ever, it is usually the case that node age information is un-
available necessitating calculation of degree distributions
that are not conditioned on node age. This effectively re-
quires binning together all nodes irrespective of their age to
obtain a final link distribution. Following Ref. [24], the usual
continuum approach [4,48,49] must be modified when non-
monotonically decreasing degree statistics are present. In
particular, the final degree distribution is obtained via

P(k,N) 1 de’ﬁ(k ki) +—1<—1—‘9k'N>_] t j=j(k,N)
s = — K = * a = N N
NJy / n N\ 9j 1=

(13)

where j(k,N) is the solution of the equation k=k;y. The top
line is used when all nodes possess the same average link
number while the second line is applicable with the plus
(negative) sign when the average numbers of links per node
is monotonically increasing (decreasing) with node number.
Nonmonotonic cases require alternative approaches.

We now use Eq. (12) to calculate the age-independent
final link distribution P(k,N) relevant when age information
is unavailable. In the case a=1 we have j# j(k), meaning
the degree k is independent of the node age j, so the 6 func-
tion of Eq. (13) immediately integrates to give [} dj 8(k
—pN)/N=8(k—pN). For other cases, we have the constraint

j:p2/(1—a)N(1+a)/(l—a)k2/(a—l)' (14)

The age constraint 1 <j=<N translates into the degree con-
straints ke [pN®, pN'@*D2]  for 0<a<l1, and &k
e [pN@D2 pN] for a> 1. Via Eq. (13), the final continu-
ous connection distribution under preferential attachment
is then
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FIG. 2. The age-independent degree distribution P(k,N) as a
function of acceleration parameter «. The logarithmic plot means
that straight lines indicate power-law distributions. The degree dis-
tributions are monotonically decreasing for 0= a<<1 over the range
ke[pN% ), a § function for a=1, and over the range k
e [0,pN?], are monotonically increasing for 1<a<3, flat for «
=3, and monotonically decreasing for &> 3. Networks in this figure
possess an average degree per node of (k)=0.4 at a network size of
N=10000.

r

2 1
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P(k,N) =94 8k —pN), a=1,
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_— > 1.
a1 (pN®)? (@D @
(15)

Each of these separate distributions is normalized over k
€ lko,k..] via fﬁzP(k,N):l where k e[pN®,») for 0<a«
<1, ke[0,N] for a=1, and k € [0,pN?] for a>1. The av-
erage degree per node (k)= f;kP(k,N):C/N as required
over these same ranges. Again, the choice p=1 and 0=«
<1 duplicates the deterministic results of Ref. [15].

The resulting age-independent degree distributions
P(k,N) are shown in Fig. 2 and are monotonically decreas-
ing for acceleration parameters 0 < a<<1, monotonically in-
creasing for 1 <a <3, uniformly flat for a=3, and mono-
tonically decreasing for aw>3. In all cases except a=1, the
age-independent distribution P(k,N) is a power law propor-
tional to k¥ with y=(a—3)/(a—1). The exponent here can
take the values ye[3,°) for ¢ €[0,1) and ye (-=»,1) for
a e (1,%), so no value of the acceleration parameter permits
exponents in the range ye[1,3].

All observed nodes have only a discrete number of con-
nections, requiring calculation of a discrete degree distribu-
tion from the above continuous degree distribution. We con-
sider how this is accomplished now. The continuous degree
distributions P(k,N) are typically defined over very limited
ranges k € [ky,k.] so it can often be the case that every node
of the network is predicted to have fractional degree less than
unity. Of course, it is impossible to observe nodes with frac-
tional degrees—every node either has zero connections or
one connection, or two connections, and so on. When most
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FIG. 3. (Color online) The age-independent discrete degree dis-
tribution P; as a function of acceleration parameter « under prefer-
ential attachment. It is evident that while the unobservable continu-
ous distributions P(k,N) appear to be distinguishable, the
observable discrete distributions are virtually indistinguishable at

low degree numbers.

connected nodes have fractional degree, it is necessary to
convert the unobservable continuous distribution P(k,N) to
an observable discrete distribution, which we denote P, giv-
ing the proportion of network nodes possessing an integral
number of k links for k € [0,N]. For networks with degree
distributions which are long tailed, the continuous distribu-
tion P(k,N) closely approximates the discrete distribution Py
and this step is often not required. In Appendix B, we detail
how to calculate the observed integral degree distribution P,
generated from a continuous power-law degree distribution

[ pNa :|2/(1—a) |: pNa
. k—-1/2 k+1/2
Pi=1,

O’

All of these distributions then have nonzero support to the
left of the boundary b and so can be partitioned to give NP~
nodes labeled 0<j<(NP™-1) each with average degree ;
=p,;N equal to

j (a=1)12
pNa<1——> , O<a<l,
k.= N (17)
i PN, a=1,
pNa/2j(a—1)/2’ a>1.

These values then feed directly into Eq. (B11) to give the
total discrete distribution P,. To further illustrate this last
stage of the calculation, consider the case a=1 where we
have k;=p;N=pN and p;=p for all nodes 0<j<N-1=N,
and noting the absence of any contribution from the right of
b so P*=0, we have
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P(k,N) defined over a finite range k € [k, k.. It is generally
the case that finite ranges impose exponential cutoffs on
scale-free continuous distributions P(k,N) to give discrete
distribution P, possessing exponential statistics. A number of
alternative mechanisms can impose an exponential cutoff on
a power-law degree distribution [42-45], and we now add
hyperacceleration to this list.

Appendix B specifies a numerical algorithm for calculat-
ing the observable discrete distribution P; defined by the
unobservable continuous distribution P(k,N). The calculated
discrete distributions equivalent to the continuous distribu-
tions of Fig. 2 appear in Fig. 3 showing that low acceleration
networks with most nodes possessing on average more than
one connection are observed to have power-law discrete de-
gree distributions. In contrast, high acceleration networks
have most nodes possessing on average only a fractional de-
gree show an observed discrete degree distributions which is
exponential in nature. In fact, the generated discrete distribu-
tions are virtually indistinguishable over wide ranges of the
acceleration parameter in marked contrast to the very differ-
ent shapes of the continuous distributions P(k,N) at different
acceleration parameters. This is due to the exponential cut-
offs imposed when the continuous distributions are defined
only over finite ranges. All of the calculations involved in the
numerical algorithm of Appendix B can in principle be done
by hand as we now illustrate using distributions P(k,N)
where the boundary point b lies within the range of support
ko<b <k, for low acceleration regimes 0=<a <1, but out-
side the range of support ky<<k.,,<<b for high acceleration
regimes a= 1. Using Appendix B, this choice gives

2(1-a)
, 0<a<l, kel2,),

a=1, k e [0,N], (16)

a>1.

N
Pk=PZ=<k>P"(1—p)N"‘, a=1, (18)

for ke [0,N].

We now turn to consider the degree distribution of only
that subset of nodes with at least one connection. As men-
tioned above, Fig. 1 makes it apparent that the actual degree
of connected nodes generally decreases with node age even
though average node degree can be monotonically increasing
or decreasing. The reason is that the k;y curves average con-
nectivity over all nodes rather than only over connected
nodes. (Recall that 8=0 means that nodes that are uncon-
nected on entry to the network forever remain unconnected.)
The probability that node 7; is connected is straightforwardly

P.(j)=1-P(0,)) using Eq.J (4) or
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FIG. 4. The proportional degree distribution k.(k,N) for con-
nected nodes under preferential attachment for various values of the
average network degree (k) at a snapshot network size of N
=10000. The curves naturally group together according to average
network degree, and are characterized by a power law k=7 with
slope y as shown. Further network growth would eventually con-
vert these scale-free distributions to exponential distributions. For
average degree <(k)=0.01, we show curves for (a,p)
=(0,0.005),(1,107),(3,2X 1071%),(5,3 X 1072); for (k)=0.1,
(a,p)=(0,0.05),(1,107),(3,2x 10713),(5,3x 10721);  for (k)
=04, (a,p)=(0,0.2),(1,4%X107),(3,8x10713),(5,107%); for
(ky=1.0, (a,p)=(0,0.5),(1,107%),(3,2 X 107'2),(5,3 X 10729).

P()=1-(1=-pj*'yY = pj* (19)

Hence, the average link number per node at node n; [Eq.
(12)] equates to the product of the average number of links
per connected node at node n;, denoted k.(j,N), and the
probability that node n; is connected, or P.(j). By definition
then, we have

ij= kc(j’N)Pc(i): (20)

giving

(21)

N(a+l)/2 {(a-1)/2 N (a+1)/2
kc(j,N) - L

1=(1=pj=ty

J
Consequently, the average number of connections of con-
nected nodes k.(j,N) is always a monotonically decreasing
function of node age j. (An equivalent derivation appeared in
Ref. [24].)

It is difficult to further analyze the degree distribution for
actually connected nodes as the distribution of Eq. (21) is
only incompletely sampled—node n; is connected only with
probability 1-7P(0,/). Figure 4 shows age-independent
degree statistics for simulated networks at a snapshot size
of N=10000 nodes and with different acceleration and
probability parameters (a,p) chosen to generate networks
over a range of average degrees 0.01<(k)=<1.0. To do this,
we choose different acceleration parameters in the set «
€{0,1,3,5} with probability parameters set according to Eq.
(3). The resulting slopes of the power-law degree distribu-
tions k=7 averaged over the corresponding acceleration pa-
rameters varies over the range 1.9 < y=<3.0. This regime was
forbidden prior to taking account of the exponential cutoffs

PHYSICAL REVIEW E 72, 016123 (2005)

imposed by the finite ranges. [The choice (a,p)=(1,1075)
generating y=2 is roughly equivalent to the accelerating
simulations of prokaryote gene regulatory networks [24].]
Additional network growth would see these scale-free distri-
butions undergoing a full transition to exponential statistics.

Finally, we briefly consider the size of the largest con-
nected island in the artificial case of purely preferentially
attached networks where initially unconnected nodes remain
always unconnected. In this particular case, preferential at-
tachment ensures that every connected node belongs to the
same interconnected largest island whose size then equates to
the number of connected nodes. As a node is connected only
if it gains some connections on entry to the network with
probability 1-7P(0,i) from Eq. (4), the size s of the largest
island is

N
s= 2 [1=(1-pie]. (22)
=1

For small p and small network sizes N, this equates to the
number of links s=~3ZY pi“~L as each connected node
likely has only one link in sparsely connected networks. In
this regime, the largest island grows at an acceleration rate
determined by the acceleration parameter «. However, out-
side this regime, the growth of the largest island eventually
saturates when almost every new node is connected [i.e.,
when 1-(1-pi®')'=~1], meaning the largest island grows
proportionally to network size N. This occurs in the limit
pi®'—1 or N large giving s=N. Should a network abso-
lutely need to maintain an accelerated growth in the size of
its largest island, as conjectured for the regulatory gene net-
work of prokaryotes due to competitive pressures, then the
point at which the largest island makes a transition from
accelerated to linear growth will represent an upper network
size limit [24-26].

IV. RANDOMLY ATTACHED ACCELERATING
NETWORKS

We now turn to consider accelerating and hyperaccelerat-
ing networks (a«=0) where new links are randomly distrib-
uted over all existing nodes. The final generated link distri-
bution will depend on the balance of two countervailing
trends. The first sees newer nodes attracting more links due
to acceleration which confers an increasing average number
of links on younger nodes, while in contrast, older nodes
have a longer time to acquire links from the newer nodes.

We now calculate the degree distribution under random
attachment, where the rate of growth of the link number for
node n; when the network has grown to size i is given under
the continuous approximation [4,48,49] as

ok ki
—H=="=pi*", (23)
i i

where k;=pi®. Here, the rate of growth in the degree kj; is
determined by the number of new links added with node #;
(k;) which are equally proportioned over the i existing
nodes. The resulting degree statistics can readily be obtained
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through integrating this equation with the initial conditions
k;j=pj* at time j to obtain

N
p[1+ln—,], a=0,
i = / (24)

T
=[N*+(a-1)j*], a>0.
a

These results satisfy Eq. (23), while integration of the link
numbers over all node numbers j gives the required total
number of links as in Eq. (2). [As established in Appendix A,
these random attachment equations are exactly reproduced
by applying a Taylor series expansion of the general equa-
tions Eq. (11) about the point x=pN“/B~0 with the reten-
tion only of terms linear in x.] For interest, Appendix C
provides the exact distribution for links under random attach-
ment.

The resulting degree k;y versus node age j distributions
are shown in Fig. 5 along with example simulation runs at
different acceleration parameters «. This figure makes clear
that the degree distribution k;y is monotonically decreasing
with j for 0= <1 so younger nodes are more heavily con-
nected than older nodes on average, and monotonically in-
creasing for «>1 so younger nodes are less heavily con-
nected than older nodes on average. It is only on the
boundary between these two regions at =1 that the degree
distribution is flat so average node degree is independent of
node age.

As previously, observed statistics normally lack age or
node number information, and we now follow standard prac-
tice in calculating the age independent degree distribution.
The k;y distribution contains information about both node
degree and node age and so approximates network statistics
(simulated or observed) when all of this information is avail-
able. We now calculate the age-independent final link distri-
bution P(k,N) as in Eq. (13). In the case a=1 we have j
# j(k), meaning the node degree k is independent of the node
age j, so the & function of Eq. (13) again integrates to give
S8(k—pN). For other cases, we have

Ne(l_k/‘”), a=0,

= 1 k\ Ve 25
J {—(N“—a—ﬂ Co<aazl, P
l-a p

The age constraint 1= ;<N translates into the degree con-
straints k € [p,p(1+1In N)] for a=0, k € [pN®,pN®/ a] for 0
<a<l1, k=pN for a=1, and k € [pN*/a,pN®] for a>1.
Via Eq. (13), these relations determine the predicted age-
independent final link distribution P(k,N) under random at-
tachment to be
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FIG. 5. (a) The average degree distribution kj;y under random
attachment as a function of node age j for various values of the
acceleration parameter «. The degree distribution is monotonically
decreasing for 0= a <1, flat for =1, and monotonically increas-
ing for a> 1. (b) Example simulated networks for various accelera-
tion parameters « with nodes listed sequentially left to right from n;
to ny with the degree of each node indicated by vertical lines. The
horizontal dashed line indicates an average degree of 2.

( 1
_e(l—k/p)’ weo.
p
1 ak \ (1-a)/e
NI \N T , 0=a<l,
P(k’N)=< pN(1 - a) p
S8(k—pN), a=1.
1 1 .
L PN(a = 1)"* (aklp — N)@=/e? @

(26)

Each of these separate distributions is normalized over
k e[ky,k.) via fﬁ;P(k,N):l where ke[p,®) for a=0,
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FIG. 6. The age-independent degree distribution P(k,N) as a
function of acceleration parameter « for randomly connected net-
works. The distributions are monotonically decreasing for a# 1
over the respective ranges k € [p, ) for =0, k € [pN*,pN*/ «] for
0<a<l, and k € [pN*/ a,pN®] for a>1.

ke[pN¥ pN®/a] for 0<a<l, k=pN for a=1, and
ke[pN*/a,pN®] for a>1. The average degree per node
(ky=[ iZkP(k,N):C/N as required over these same ranges.
As shown in Fig. 6, the predicted age-independent continu-
ous degree distribution P(k,N) is monotonically decreasing
as a function of k for both «<<1 and a>1, and a & function
for a=1.

Again, all observed nodes have only a discrete number of
connections, requiring that calculation of a discrete degree
distribution from the above continuous degree distribution.
The continuous degree distributions P(k,N) are again typi-
cally defined over very limited ranges k € [k, k.,] for accel-
eration parameters greater than zero so many nodes possess
fractional degree less than unity. This again requires that the
continuous distribution P(k,N) be converted into an equiva-
lent discrete distribution P, following the methods of Appen-
dix B. Figure 7 shows the results of taking full account of the
finite ranges of the continuous distributions P(k,N) which

( 1
2 sinh(—)e(l_klp),
2p
1 - (alpN®) (k= 1/2) |«
PZ = < | l-«a | L
0,
(alpNY)(k+1/2) -1 |V
L a-—1 ) L
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FIG. 7. (Color online) The age-independent discrete degree dis-
tribution P; as a function of acceleration parameter a for random
attachment. It is evident that while the unobservable continuous
distributions P(k,N) are distinguishable, the observable discrete
distributions are virtually indistinguishable. We also show the actual
points for different network simulations of N=10000 nodes with
average degree (k)=0.4 with a=0 (triangles), 1 (diamonds), 3
(circles), and 5 (squares).

impose exponential cutoffs on the generated discrete distri-
bution P,. It is clear that the exponential cutoffs render the
observable discrete distributions for different acceleration
parameters essentially indistinguishable. This result is borne
out by simulations of networks with N=10 000 nodes with
average degree (k)=0.4 for different acceleration parameters
(also shown in Fig. 7).

Again, we illustrate the numerical algorithm of Appendix
B via specific examples for randomly attached networks.
Consider continuous distributions P(k,N) where the bound-
ary point b lies within the range of support for the distribu-
tion for all acceleration parameters except @=1. That is, we
assume pN*<b<pN%a for O0ssa<l and pN*a<b
<pN*® for a>1, while for a=1 we assume pN<b. These
illustrative choices then give

a=0,
(1= (alpNY) (ke + 1/2) |V
(a/pNY)( ) 0<a<l,
-« (27)
a=1,
[ (a/pN®) (k= 1/2) =1 |V
kit
a_ _

In this example, the allowed ranges for the degree k are k € [2,%) for =0, k €[2,pN*/a] for 0<a <1, and k € [2,pN*] for
a>1. Our example distributions have nonzero support to the left of the boundary point b and so can be partitioned to give NP~
nodes labeled 0=<j=<(NP~—1) each with average degree k;=p;N equal to
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These values then feed directly into Eq. (B11) to give the
total discrete distribution P,. To illustrate this last stage of
the calculation, consider the case a=1 where we have k;
=p;N=pN and p;=p for all nodes 0<j<N-1~N, and not-
ing the absence of any contribution from the right of b, so
P*t=0, we have

(29)

k]_ N—k’ =17
k%( p) a

: (N
Py=P;=
for ke [0,N].

We now turn to establish how the formation of a single
giant connected component depends on the acceleration pa-
rameter . The number of nodes in the largest island s will
be a function of network size and will grow as new nodes
and new connections are added to the network. The largest
island will grow by one when the new node n; forms one link
with probability P(1,7) which attaches to the largest island
with probability s/i, and will grow by the average size of all
smaller islands s when node n; forms two links with prob-
ability P(2,i) either of which connects to the largest island
with probability s/i while the remaining link connects to an
external island with probability (i—s)/i. Altogether, the rate
of growth of the largest island varies as

ds s (i—9)s

Z_Ipai+2
g~ T2,

P2,i) = pi® s + p’5ite (i - 5)s,

(30)

using Eq. (4) and noting the restriction pi®~'< 1. Numerical
simulations (and some analytically tractable solutions) indi-
cate that the first term here is negligible compared to the
second, and hereinafter we ignore this first term. For initial
conditions, we have s(n,)=2 at node n, where the first link
likely appears (see Appendix B). Figure 8 shows the pre-
dicted growth of the largest island compared to simulated
networks for different acceleration parameters «, where all
networks possess an average degree per node of (ky=0.4 at a
maximum simulated network size of N=1000, and we as-
sume an average size of smaller islands of s=7.5. There is an
evident close connection between theoretically predicted
curves and observed statistics.

V. CONCLUSION

We have examined the network structural transitions dis-
played by accelerating and hyperaccelerating probabilistic
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a=0,

—L) ], 0<a<l,

N (28)
a=1,

networks motivated by the observation that important bio-
logical networks such as prokaryote gene regulatory net-
works are both hyperaccelerating and size limited due to net-
work structural transitions. We examined accelerating
growing networks of nodes connected by undirected links
which were probabilistically added with each new node and
either preferentially or randomly attached to existing nodes.
The addition of a probabilistic envelope allowing the number
of new links added with each new node to be an integer
greater than or equal to zero allowed us to extend network
theory to model sparsely connected networks where the ma-
jority of nodes are entirely unconnected (e.g., prokaryote
gene regulatory networks). Consequently, the probabilistic
envelope also allowed us to lift existing constraints on the
modeling of accelerating networks, allowing us to treat de-
celerating, accelerating, and hyperaccelerating networks.
These latter two classes of networks were shown to be sub-
ject to transitions in which either a single giant connected
component forms or the network condenses into a fully con-
nected state with exponential statistics. We were able to
roughly locate these transitions as a function of the accelera-
tion and probability parameters and the network size. Mean
field approximations were compared to network simulations
over a wide range of parameters and shown to be consistent.

The present paper uses mean field network theory to
model rapidly accelerating networks consisting of many un-

1.0 -

s/IN

08

0.8

0.4 -

02

3000 N

4000

FIG. 8. The simulated and predicted size of the largest island s
expressed as a proportion of growing network size for various ac-
celeration parameters «. Each network has average degree (k)
=0.4 at a maximum simulated network size N.=1000 nodes, and in
every case, we assume that the average size of smaller islands is
5=7.5.
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connected nodes allowing the examination of the statistical
transitions generated under accelerated growth. As such,
these extended models will be useful in treating models of,
for instance, accelerating biological regulatory networks
mainly consisting of unconnected nodes and displaying net-
work transitions which limit size and complexity. Such mod-
els are required to explain the observed evolutionary record
of prokaryote gene regulatory networks.

APPENDIX A: RELATIVE WEIGHTS OF PREFERENTIAL
AND RANDOM ATTACHMENT

In analyzing Eq. (11), it is first necessary to determine
appropriate limits on 8 giving access to regimes where pref-
erential attachment dominates random attachment for accel-
erating networks.

Appropriate limits on S can be obtained by performing a
Taylor expansion of Eq. (11) about the point x=pN*/B=0
while retaining only terms linear in x. Using =0 in Eq.

(11), we have
ij:‘—’{(1+)¢)<£>)€—1].
x J

Noting d/dx[{(1+x)a*]=a*[1+(1+x)In a], the leading terms
of a Taylor expansion immediately reproduce the a=0 result
for the random attachment model of Eq. (24). Similarly, us-
ing >0 in Eq. (11) gives

kiy= {1 <L)aM [2/(a+1)]x*+ 1 :|(a+l)/2a 1
w=B) |1+ [2/(a+ DIx(IN)*+ 1 -1

(A2)

(A1)

A straightforward differentiation then gives a Taylor expan-
sion whose leading terms exactly equal the >0 result for
the random attachment model of Eq. (24). Hence, random
attachment entirely dominates when pN“/B<1 or equiva-
lently when

1
B> Brandom =pNa= 5(1 + 0()<k> (A3)

For values of B8< B ndoms preferential attachment will influ-
ence the final distribution. For sufficiently small 3, preferen-
tial attachment will dominate (rather than merely contribute)
and this latter boundary can be located as follows. The first
connected node, denoted n, (i.e., the cth node), likely ap-
pears when the cumulative average number of added initial
links sums roughly to unity,

a+l

C
Epla =~ pe =1
i=1

(A4)

Now the floating end of the new link attached to node 7, can
be either randomly attached to one of the nodes n, to n, with
probability proportional to ¢, or preferentially attached to
node n,. with probability proportional to 1+ 8= 1 in the pref-
erential attachment regime. For preferential attachment to
dominate, we require ¢c<<1, or equivalently,
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FIG. 9. (Color online) A continuous distribution P(k,N) defined
over the finite range [k, k.| generates an observable discrete distri-
bution P; for k=0,1,2,... . The P(k,N) distribution lying to the
left of the boundary b=3/2 represents network nodes with frac-
tional average degree distributions, and is partitioned into regions
each of area 1/N with boundaries [;,k;,;) for j=0. The P(k,N)
distribution lying to the right of the boundary b=3/2 represents
network nodes with integral average degree, and is partitioned into
regions as shown.

1/(a+1) k 1/(a+1)
P } =[<>} a3
a+1 2NE

1
B< ﬁpref == |:
c
For the typical hyperaccelerating networks considered here,
this last constraint ensures that preferential attachment domi-
nates only when f3 is so small as to be essentially zero, and in
this paper, we analyze preferential attachment using the set-
ting 8=0.

APPENDIX B: EXPONENTIAL CUTOFFS IN
HYPERACCELERATING NETWORKS

An arbitrary continuous network degree distribution
P(k,N) defined over a finite range [k,k..] is essentially un-
observable, and in actuality, generates an equivalent discrete
degree distribution P, with k €[0,N] which can be com-
pared to observed statistics. Here, we show how to calculate
the observable discrete distribution from the theoretically
predicted but unobservable continuous distribution.

The first step is to partition the continuous distribution
P(k,N) into two parts at an arbitrarily chosen boundary point
b of order unity. We choose b=3/2 as shown in Fig. 9. Then,
that proportion of the continuous distribution P(k,N) lying to
the right of b can be considered to contribute to the long tail
of the observed discrete distribution P, in the normal way.
That is, the proportion of the continuous distribution in the
region [k—1/2,k+1/2) for integral k equal to

k+1/2
Pl = f P(k,N)dk (B1)

k=172

can be entirely assigned to the discrete distribution bin P;.
The total proportion of the continuous distribution P(k,N) so
assigned is
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koo ke
Pr= E PZ: f P(k,N)dk,
k=b+1/2 b

(B2)

and this proportion of the distribution describes the degree
distribution of a total of NP* nodes. When this proportion is
close to unity as usually applies for long tailed distributions,
nothing further need be done and the distribution bins P}
=P, then equate to the predicted discrete observable distri-
bution.

However, when P* is significantly less than unity as ap-
plies for hyperaccelerating networks, it is necessary to assign
the remaining proportion of the continuous distribution lying
to the left of the chosen value b to the discrete distribution
bins P,. The proportion of the continuous distribution re-
maining to be assigned is

b
P‘:f P(k,N)dk=1- P*, (B3)

ko

with this proportion of the distribution describing the degree
distribution of a total of NP~ nodes. The best way to under-
stand how this remaining assignment is done is through a
successive partitioning of the usual normalization constraint,

koo
1= f P(k,N)dk

ko
b ko
= f P(k,N)dk + J P(k,N)dk
ko b
(NP™-1) kj+1
= > P(k,N)dk + P*. (B4)
=0 Jk

Here, the continuous distribution to the left of the point
k=b is partitioned into NP~ regions with respective bound-
aries [k;,k;,;) for k;e[ky,b] and k;<k;,, while as noted
above, that to the right of k=5 is partitioned into potentially
an infinite number of regions with boundaries [k—1/2,k
+1/2) for integral k> b. The second contribution to the dis-
crete bin P, comes from the NP~ regions of the continuous
distribution lying to the left of ». We would like each of
these NP~ regions to correspond to a single node of the net-
work with nonintegral average degree, and achieve this by
choosing the regional boundaries k; such that

kj .
fP(k,N)dk:i, je[0,NP—1].
ko N

(B5)

Here, each region defines an area of exactly 1/N so j regions
have a combined area of j/N (see Fig. 9). The average de-
gree of the node corresponding to the jth region is approxi-
mately

<k j> =k j
and is typically nonintegral. (Other alternatives such as (k;)
=(k;+k;_;)/2 might be chosen but the difference is negli-
gible for large N.) As any given node can, in practice, only

possess an integral number of connections, these nonintegral
average node degrees require that the link numbers for these

(B6)
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nodes be assigned probabilistically over the range k
€[0,N] so as to give the required average. This is achieved
by assigning an integral number k; of links to this region
with k; € [0,N] according to the probability distribution

N
Pk;) = ( )p'ff(l -p)V ™, (B7)
with probabilities p; chosen to satisfy
(k)
= , B8
Pi="y (B3)

to ensure that this distribution has average (k;)=p;N=(k;).
We note that later results will not be overly dependent on
whether the P, distribution chosen here is binomial in form,
or some other reasonable distribution. Summing over all the
NP~ regions to the left of b, the proportion of nodes possess-
ing an integral number of k;=k links is then

N
(k )Pf(l -p)"*

for k € [0,N] and zero otherwise. This is normalized accord-
ing to EQ’ZOP,ZzP‘. Consequently, the total proportion of the
network possessing a discrete number of k links is expected
to be

1 (NP™-1)

Pi=2 X

N (B9)

P,=P;+P}. (B10)

As required, this distribution is normalized and has average
(ky=L/N. This gives the discrete probability that a node has
k links for ke[0,%). It is also common to calculate the
related probability that connected nodes have k links and this
is given by P, =P,/(1-P,) for k=1.

In summary, for the general case of arbitrary continuous
distributions P(k,N) defined over the range k € [k, k], the
predicted discrete distribution is

NP -1 k+172
Pk=P2+PZ=N > <k>pf(1 —pj)N"‘+f P(k,N)dk,
j=0 k=172

(B11)

where P‘=ffOP(k,N)dk, p;j=k;/N, k; is chosen to satisfy
JIN=[ i{)P(k,N)dk, and the partition point b is arbitrarily
chosen to be close to unity.

APPENDIX C: EXACT RANDOM ATTACHMENT
LINKAGE DISTRIBUTION

We here present the exact distribution for links under ran-
dom attachment. First, note that node n; initially receives an
average of (j)=pi® links where je[0,i] with each link
formed with probability pi®~!, and subsequently receives an
average of (j)=pi%/i=pi®~" links from itself where j
€[0,i] with each link formed with probability pi®'. The
arrival of node n,,; is accompanied by an additional p(i
+1)% new links of which an average (j,;)=p(i+1)%/(i+1)
=p(i+1)*! attach to node n; where j,,; €[0,i+1] with each
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link formed with probability p(i+1)*~2, and so on, until it
receives an average of {j,)=pN®/N=pN®~! links from node
ny with jy€[0,N] with each link formed with probability
pN®2. The joint probability that node n; obtains j,j;,...,jy
connections is then

Pi(j’ji7ji+17 7jN) = ( )[Pl“ 1]1[1 pla_l]l_ll_[ ( )

n=i Jﬂ

X[pn®2Yu[1 — pn®2]"n. (C1)
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The average number of inbound links for node n; is then

N
i) =pi©+ X pn®!,

n=i

G+ji+ (C2)

which integrates to give Eq. (24) as found by the continuum
approach. Unfortunately, further work with this more exact
multivariate distribution is generally intractable.
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